Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473865

RESUMO

Opioid peptides and their G protein-coupled receptors are important regulators within the cardiovascular system, implicated in the modulation of both heart and vascular functions. It is known that naloxone-an opioid antagonist-may exert a hypertensive effect. Recent experimental and clinical evidence supports the important role of inflammatory mechanisms in hypertension. Since opioids may play a role in the regulation of both blood pressure and immune response, we studied these two processes in our model. We aimed to evaluate the effect of selective and non-selective opioid receptor antagonists on blood pressure and T-cell activation in a mouse model of high swim stress-induced analgesia. Blood pressure was measured before and during the infusion of opioid receptor antagonists using a non-invasive tail-cuff measurement system. To assess the activation of T-cells, flow cytometry was used. We discovered that the non-selective antagonism of the opioid system by naloxone caused a significant elevation of blood pressure. The selective antagonism of µ and κ but not δ opioid receptors significantly increased systolic blood pressure. Subsequently, a brief characterization of T-cell subsets was performed. We found that the blockade of µ and δ receptors is associated with the increased expression of CD69 on CD4 T-cells. Moreover, we observed an increase in the central memory CD4 and central memory CD8 T-cell populations after the δ opioid receptor blockade. The antagonism of the µ opioid receptor increased the CD8 effector and central memory T-cell populations.


Assuntos
Analgesia , Hipertensão , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Pressão Sanguínea , Receptores Opioides delta/metabolismo , Naloxona/farmacologia , Receptores Opioides mu , Dor , Analgésicos Opioides/farmacologia , Receptores Opioides kappa/metabolismo
2.
Curr Issues Mol Biol ; 45(4): 3446-3461, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37185750

RESUMO

Colorectal cancer is the third most frequently diagnosed cancer in the world. Despite extensive studies and apparent progress in modern strategies for disease control, the treatment options are still not sufficient and effective, mostly due to frequently encountered resistance to immunotherapy of colon cancer patients in common clinical practice. In our study, we aimed to uncover the CCL9 chemokine action employing the murine model of colon cancer to seek new, potential molecular targets that could be promising in the development of colon cancer therapy. Mouse CT26.CL25 colon cancer cell line was used for introducing lentivirus-mediated CCL9 overexpression. The blank control cell line contained an empty vector, while the cell line marked as CCL9+ carried the CCL9-overexpressing vector. Next, cancer cells with empty vector (control) or CCL9-overexpressing cells were injected subcutaneously, and the growing tumors were measured within 2 weeks. Surprisingly, CCL9 contributed to a decline in tumor growth in vivo but had no effect on CT26.CL25 cell proliferation or migration in vitro. Microarray analysis of the collected tumor tissues revealed upregulation of the immune system-related genes in the CCL9 group. Obtained results suggest that CCL9 reveals its anti-proliferative functions by interplay with host immune cells and mediators that were absent in the isolated, in vitro system. Under specific study conditions, we determined unknown features of the murine CCL9 that have so far bee reported to be predominantly pro-oncogenic.

3.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232988

RESUMO

In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3-3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1ß mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.


Assuntos
Analgesia , Endocanabinoides , Analgésicos Opioides/farmacologia , Animais , Ácidos Araquidônicos , Cromatografia Líquida , Endocanabinoides/farmacologia , Formaldeído/farmacologia , Camundongos , Microglia , Minociclina/farmacologia , Naloxona/farmacologia , Dor/genética , Limiar da Dor , Alcamidas Poli-Insaturadas , Receptores de Canabinoides , Receptores Opioides/genética , Rimonabanto/farmacologia , Espectrometria de Massas em Tandem
4.
Sci Rep ; 12(1): 13676, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953533

RESUMO

The mechanism underlying the association between elevated red cell distribution width (RDW) and poor prognosis in variety of diseases is unknown although many researchers consider RDW a marker of inflammation. We hypothesized that RDW directly affects intravascular hemodynamics, interactions between circulating cells and vessel wall, inducing local changes predisposing to atherothrombosis. We applied different human and animal models to verify our hypothesis. Carotid plaques harvested from patients with high RDW had increased expression of genes and proteins associated with accelerated atherosclerosis as compared to subjects with low RDW. In microfluidic channels samples of blood from high RDW subjects showed flow pattern facilitating direct interaction with vessel wall. Flow pattern was also dependent on RDW value in mouse carotid arteries analyzed with Magnetic Resonance Imaging. In different mouse models of elevated RDW accelerated development of atherosclerotic lesions in aortas was observed. Therefore, comprehensive biological, fluid physics and optics studies showed that variation of red blood cells size measured by RDW results in increased interactions between vascular wall and circulating morphotic elements which contribute to vascular pathology.


Assuntos
Aterosclerose , Índices de Eritrócitos , Animais , Aterosclerose/patologia , Células Sanguíneas , Artérias Carótidas/patologia , Eritrócitos/patologia , Humanos , Camundongos , Prognóstico , Fatores de Risco
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163468

RESUMO

The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/química , Fenótipo , RNA-Seq , Transdução de Sinais
6.
Insects ; 12(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680651

RESUMO

Understanding the evolutionary relationship between immune cells and the blood-brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.

7.
Brain Sci ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067974

RESUMO

The development of alcohol dependence and depression is determined by various genetic and environmental factors. In the presented study, we used high analgesia (HA) and low analgesia (LA) mouse lines, characterized by different endogenous opioid system activity and divergent blood-brain barrier permeability, to determine the influence of cross-fostering of these lines raised by surrogate mothers on ethanol consumption and development of depressive-like behaviors. We also investigated ethanol drinking by biological parents or surrogate mothers. Furthermore, we investigated whether these parental changes would alter the effect of naloxone on ethanol intake and depressive-like behaviors in offspring. Our results reveal that cross-fostering of HA and LA raised by surrogate mothers has a greater impact on depressive-like behaviors than ethanol consumption. Ethanol intake by biological parents substantially affected depressive-like behaviors and ethanol consumption in offspring. Moreover, ethanol intake by biological parents or an adoptive mother modified the effect of naloxone on ethanol consumption and preference and depressive-like behaviors in the HA offspring only. Together, these results indicate that cross-fostering differentially affects the effect of naloxone on alcohol consumption and the development of depression.

8.
Eur J Pharmacol ; 907: 174245, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126091

RESUMO

Tapentadol, an analgesic with a dual mechanism of action, involving both µ-opioid receptor agonism and noradrenaline reuptake inhibition (MOP-NRI), was designed for the treatment of moderate to severe pain. However, the widely acknowledged risk of analgesic tolerance and development of physical dependence following sustained opioid use may hinder their effectiveness. One of the possible mechanisms behind these phenomena are alterations in nitric oxide synthase (NOS) system activity. The aim of the study was to investigate the tolerance and dependence potential of tapentadol in rodent models and to evaluate the possible role of nitric oxide (NO) in these processes. Our study showed that chronic tapentadol treatment resulted in tolerance to its antinociceptive effects to an extent similar to tramadol, but much less than morphine. A single injection of a non-selective NOS inhibitor, NG-nitro-L-arginine (L-NOArg), reversed the tapentadol tolerance. In dependence studies, repeated administration of L-NOArg attenuated naloxone-precipitated withdrawal in tapentadol-treated mice, whereas a single injection of L-NOArg was ineffective. Biochemical analysis revealed that tapentadol decreased nNOS protein levels in the dorsal root ganglia of rats following 31 days of treatment, while no significant changes were found in iNOS and eNOS protein expression. Moreover, pre-treatment with L-NOArg augmented tapentadol antinociception in an opioid- and α2-adrenoceptor-dependent manner. In conclusion, our data suggest that the NOS system plays an important role in the attenuation of tapentadol-induced tolerance and withdrawal. Thus, inhibition of NOS activity can serve as a promising treatment option for long-term tapentadol use by extending its effectiveness and improving the side-effects profile.


Assuntos
Tapentadol , Analgésicos Opioides/farmacologia , Animais , Camundongos , Morfina/farmacologia , Naloxona/farmacologia , Óxido Nítrico/metabolismo , Ratos
9.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920718

RESUMO

The opioid system is well-known for its role in modulating nociception and addiction development. However, there are premises that the endogenous opioid system may also affect blood pressure. The main goal of the present study was to determine the impact of different endogenous opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological modification. In our study, we used two mouse lines which are divergently bred for high (HA) and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with low endogenous opioid system activity have higher basal blood pressure compared to those with a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to impaired vascular relaxation independent of endothelium, which corresponded with decreased guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe that a novel mechanism which involves endogenous opioid system activity in the regulation of blood pressure will be a promising target for further studies in hypertension development.


Assuntos
Aorta/efeitos dos fármacos , Pressão Sanguínea , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nociceptividade , Animais , Aorta/citologia , Aorta/metabolismo , Endotélio Vascular/efeitos dos fármacos , Feminino , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Vasodilatação
10.
Neuroscience ; 458: 1-10, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465406

RESUMO

Brain-derived neurotrophic factor (BDNF) plays an important role in processes associated with neuroplasticity and neuroprotection. Evidence suggests that decreased BDNF levels in the central nervous system (CNS) represent a mechanism underlying the development of mood disorders. We hypothesize that both congenital and traumatic brain injury (mTBI)-induced blood-brain barrier (BBB) breakdown are responsible for brain BDNF depletion that contributes to the development of depressive-like symptoms. We employed a mouse model of innate differences in BBB integrity with high (HA) and low (LA) permeability. Depressive-like behaviours were determined under chronic mild stress (CMS) conditions or following mTBI using the tail suspension test (TST). Microvascular leakage of the BBB was evaluated using the Evans Blue Dye (EBD) extravasation method. BDNF concentrations in the brain and plasma were measured using the ELISA. Control HA mice with congenitally high BBB permeability showed exacerbated depressive-like behaviours compared with LA mice. In LA mice, with normal BBB function, mTBI, but not CMS, facilitated depressive-like behaviours, which correlated with enhanced BDNF efflux from the brain. In addition, mTBI triggered upregulation of the Bdnf gene in LA mice to compensate for BDNF loss. No alterations in BDNF levels were observed in mTBI and CMS-exposed HA mice. Moreover, CMS did not induce BBB damage or affect depressive-like behaviours in HA mice despite downregulating Bdnf gene expression. To conclude, BDNF efflux through the mTBI-disrupted BBB is strongly linked to the development of depressive-like behaviours, while the depressive phenotype in mice with congenital BBB dysfunction is independent of BDNF leakage.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Barreira Hematoencefálica , Encéfalo , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Fator Neurotrófico Derivado do Encéfalo , Camundongos
11.
Addict Biol ; 25(1): e12683, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30334599

RESUMO

Several preclinical and clinical studies that deal with the neuropathological consequences of mild traumatic brain injury (mTBI) have focused on unraveling its effect on ethanol drinking behavior. Previous reports describe changes in ethanol consumption, both in animal models of mTBI as well as in patients, after concussive brain injury. However, the neurobiological mechanisms underlying this phenomenon are still poorly understood. In the present study, we used a unique model of mouse lines divergently selected for high (HA) or low (LA) swim stress-induced analgesia to examine the effect of mTBI on ethanol drinking behavior. In comparison with LA mice, their HA counterparts exhibited increased blood-brain barrier (BBB) permeability, lower basal alcohol preference, and lower level of stress-induced ethanol intake. Here, we showed that mTBI attenuates voluntary ethanol intake in LA, but not in HA mice. Interestingly, BBB disruption after mannitol infusion also decreases the level of ethanol drinking behavior in this line. We conclude that in alcohol-preferring LA mice, BBB disruption as a consequence of mTBI attenuates ethanol consumption. Our results suggest that the innate level of BBB integrity plays a pivotal role in regulation of ethanol consumption in mice showing differential endogenous opioid system activity.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Etanol/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo , Modelos Animais de Doenças , Camundongos , Permeabilidade , Estresse Fisiológico
12.
Nutrients ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396831

RESUMO

In mammals, 2 × 1012 red blood cells (RBCs) are produced every day in the bone marrow to ensure a constant supply of iron to maintain effective erythropoiesis. Impaired iron absorption in the duodenum and inefficient iron reutilization from senescent RBCs by macrophages contribute to the development of anemia. Ferroportin (Fpn), the only known cellular iron exporter, as well as hephaestin (Heph) and ceruloplasmin, two copper-dependent ferroxidases involved in the above-mentioned processes, are key elements of the interaction between copper and iron metabolisms. Crosslinks between these metals have been known for many years, but metabolic effects of one on the other have not been elucidated to date. Neonatal iron deficiency anemia in piglets provides an interesting model for studying this interplay. In duodenal enterocytes of young anemic piglets, we identified iron deposits and demonstrated increased expression of ferritin with a concomitant decline in both Fpn and Heph expression. We postulated that the underlying mechanism involves changes in copper distribution within enterocytes as a result of decreased expression of the copper transporter-Atp7b. Obtained results strongly suggest that regulation of iron absorption within enterocytes is based on the interaction between proteins of copper and iron metabolisms and outcompetes systemic regulation.


Assuntos
Anemia Ferropriva/metabolismo , Proteínas de Transporte de Cátions/biossíntese , ATPases Transportadoras de Cobre/biossíntese , Cobre/metabolismo , Regulação para Baixo , Duodeno/metabolismo , Enterócitos/metabolismo , Doenças dos Suínos/metabolismo , Anemia Ferropriva/veterinária , Animais , Deficiências de Ferro , Suínos
13.
Neuroscience ; 404: 246-258, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30794845

RESUMO

Bidirectional selection of mice for high (HA) and low (LA) swim stress-induced analgesia (SSIA) is associated with a divergent response to opioids. In the current study, we investigated whether the genetic divergence in opioid system activity between HA and LA mice also affects cannabinoid sensitivity. Additionally, we also investigated whether the endocannabinoid system mediates SSIA in these lines. Numerous reports support the existence of pharmacological and molecular interactions between the opioid and cannabinoid systems along the pain pathways, as both systems utilize the same G-protein subtype for signal transduction. Mice from both lines were treated with a non-selective CB1/CB2 agonist, WIN55,212-2 and their behavior was evaluated according to the tetrad paradigm assessing antinociception, catalepsy, hypothermia and locomotor activity. Surprisingly, the engagement of CB1 receptors in SSIA was not confirmed. G-protein activation was studied in different brain regions and the spinal cord in the [35S]GTPγS assay. It was shown that WIN55,212-2 produced more potent antinociception in HA than in LA mice. Also, HA mice displayed stronger cannabinoid-induced catalepsy in the bar test. However, LA mice were more sensitive to the hypothermic effect of WIN55,212-2. The intensity of behavioral responses to WIN55,212-2 was correlated with increased G-protein activation in the periaqueductal gray matter, frontal cortex, striatum and thalamus in HA mice. A weak response to WIN55,212-2 in LA mice could depend on impaired CB2 receptor signaling. In conclusion, differences in both opioid and cannabinoid sensitivity between HA and LA mice could stem from alterations in intracellular second messenger mechanisms involving G-protein activation.


Assuntos
Encéfalo/fisiologia , Dor/genética , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Estresse Psicológico/genética , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao GTP/agonistas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Especificidade da Espécie , Estresse Psicológico/metabolismo
14.
Front Pharmacol ; 10: 1593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116660

RESUMO

Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.

15.
Neuropharmacology ; 144: 37-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326238

RESUMO

Mice selected for high (HA) and low (LA) swim stress-induced analgesia (SSIA) are a unique model for studying the genetic background of this phenomenon. HA and LA miceshow substantial differences in the magnitude of the antinociceptive response to stress and when treated with exogenous opioids. However, the direct cause underplaying this distinctive feature has not yet been identified. The current study was designed to investigate the possibility that disturbances in G-protein signaling could explain the divergent response to opioid agonists. Supraspinal and spinal opioid sensitivity was assessed in vivo with intraperitoneal morphine and subsequent thermal stimulus exposure. The level of opioid receptor-mediated G-protein activation was investigated by means of DAMGO and morphine-stimulated [35S]GTPγS assay in the brain and spinal cord homogenates from HA and LA mice. Morphine (3-249 µmol/kg, i.p) was over 6 - and 3 - times more potent in HA than LA mice in the hot plate and tail-flick assays, respectively. Additionally, HA mice showed elevated ß - endorphin levels in the brain. Enhanced efficacy of agonist-stimulated [35S]GTPγS binding was detected in opioid receptor-rich limbic regions of HA mice like the hypothalamus and hippocampus. Increased G-protein activity also emerged in the thalamus, periaqueductal gray matter and prefrontal cortex. In conclusion, the magnitude of the antinociceptive response to opioids in HA and LA mice is correlated with alterations in G-protein activation in brain regions responsible for integration and descending modulation of nociceptive information as well as at sites governing the emotional response to stressful stimuli.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Percepção da Dor/fisiologia , Dor/metabolismo , Estresse Psicológico/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Morfina/farmacologia , Dor/tratamento farmacológico , Dor/genética , Dor/psicologia , Seleção Artificial , Especificidade da Espécie , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Estresse Psicológico/genética , Natação/fisiologia , Natação/psicologia , beta-Endorfina/metabolismo
16.
Neuropharmacology ; 118: 90-101, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322978

RESUMO

The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by µ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Transtornos do Humor/fisiopatologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta/metabolismo , Estresse Psicológico/fisiopatologia , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Analgesia , Análise de Variância , Animais , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Etanol/farmacologia , Genótipo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Transtornos do Humor/etiologia , Morfinanos/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/genética , Estresse Psicológico/genética , Natação , beta-Endorfina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...